在 2020 年 7 月,OpenAI 发布了模型索引为的 davinci
的初代 GPT-3 论文,从此它就开始不断进化。在 2021 年 7 月,Codex 的论文发布,其中初始的 Codex 是根据(可能是内部的)120 亿参数的 GPT-3 变体进行微调的。后来这个 120 亿参数的模型演变成 OpenAI API 中的code-cushman-001
。在 2022 年 3 月,OpenAI 发布了指令微调 (instruction tuning) 的论文,其监督微调 (supervised instruction tuning) 的部分对应了davinci-instruct-beta
和text-davinci-001
。在 2022 年 4 月至 7 月的,OpenAI 开始对code-davinci-002
模型进行 Beta 测试,也称其为 Codex。然后code-davinci-002
、text-davinci-003
和ChatGPT
都是从code-davinci-002
进行指令微调得到的。详细信息请参阅 OpenAI的模型索引文档。
尽管 Codex 听着像是一个只管代码的模型,但code-davinci-002
可能是最强大的针对自然语言的GPT-3.5 变体(优于 text-davinci-002
和 -003
)。code-davinci-002
很可能在文本和代码上都经过训练,然后根据指令进行调整(将在下面解释)。然后2022 年 5-6 月发布的text-davinci-002
是一个基于code-davinci-002
的有监督指令微调 (supervised instruction tuned) 模型。在text-davinci-002
上面进行指令微调很可能降低了模型的上下文学习能力,但是增强了模型的零样本能力(将在下面解释)。然后是text-davinci-003
和 ChatGPT
,它们都在 2022 年 11 月发布,是使用的基于人类反馈的强化学习的版本指令微调 (instruction tuning with reinforcement learning from human feedback) 模型的两种不同变体。text-davinci-003
恢复了(但仍然比code-davinci-002
差)一些在text-davinci-002
中丢失的部分上下文学习能力(大概是因为它在微调的时候混入了语言建模) 并进一步改进了零样本能力(得益于RLHF)。另一方面,ChatGPT 似乎牺牲了几乎所有的上下文学习的能力来换取建模对话历史的能力。
总的来说,在 2020 - 2021 年期间,在code-davinci-002
之前,OpenAI 已经投入了大量的精力通过代码训练和指令微调来增强GPT-3。当他们完成code-davinci-002
时,所有的能力都已经存在了。很可能后续的指令微调,无论是通过有监督的版本还是强化学习的版本,都会做以下事情(稍后会详细说明):
- 指令微调不会为模型注入新的能力 —— 所有的能力都已经存在了。指令微调的作用是解锁 / 激发这些能力。这主要是因为指令微调的数据量比预训练数据量少几个数量级(基础的能力是通过预训练注入的)。
- 指令微调将 GPT-3.5 的分化到不同的技能树。有些更擅长上下文学习,如
text-davinci-003
,有些更擅长对话,如ChatGPT
。 - 指令微调通过牺牲性能换取与人类的对齐(alignment)。 OpenAI 的作者在他们的指令微调论文中称其为 "对齐税" (alignment tax)。许多论文都报道了
code-davinci-002
在基准测试中实现了最佳性能(但模型不一定符合人类期望)。 在code-davinci-002
上进行指令微调后,模型可以生成更加符合人类期待的反馈(或者说模型与人类对齐),例如:零样本问答、生成安全和公正的对话回复、拒绝超出模型它知识范围的问题。
三、Code-Davinci-002和 Text-Davinci-002,在代码上训练,在指令上微调
在code-davinci-002
和text-davinci-002
之前,有两个中间模型,分别是 davinci-instruct-beta 和 text-davinci-001。两者在很多方面都比上述的两个-002模型差(例如,text-davinci-001 链式思维推理能力不强)。所以我们在本节中重点介绍 -002 型号。
3.1 复杂推理能力的来源和泛化到新任务的能力
我们关注code-davinci-002
和text-davinci-002
,这两兄弟是第一版的 GPT3.5 模型,一个用于代码,另一个用于文本。它们表现出了四种与初代 GPT-3 不同的重要能力:
- 响应人类指令:以前,GPT-3 的输出主要训练集中常见的句子。现在的模型会针对指令 / 提示词生成更合理的答案(而不是相关但无用的句子)。
- 泛化到没有见过的任务:当用于调整模型的指令数量超过一定的规模时,模型就可以自动在从没见过的新指令上也能生成有效的回答。 这种能力对于上线部署至关重要,因为用户总会提新的问题,模型得答得出来才行。
- 代码生成和代码理解:这个能力很显然,因为模型用代码训练过。
- 利用思维链 (chain-of-thought) 进行复杂推理:初代 GPT3 的模型思维链推理的能力很弱甚至没有。 code-davinci-002 和 text-davinci-002 是两个拥有足够强的思维链推理能力的模型。
- 思维链推理之所以重要,是因为思维链可能是解锁突现能力和超越缩放法则 (scaling laws) 的关键。请参阅上一篇博文。
这些能力从何而来?
与之前的模型相比,两个主要区别是指令微调和代码训练。具体来说
- 能够响应人类指令的能力是指令微调的直接产物。
- 对没有见过的指令做出反馈的泛化能力是在指令数量超过一定程度之后自动出现的,T0、Flan 和 FlanPaLM 论文进一步证明了这一点
- 使用思维链进行复杂推理的能力很可能是代码训练的一个神奇的副产物。对此,我们有以下的事实作为一些支持:
- 最初的 GPT-3 没有接受过代码训练,它不能做思维链。
- text-davinci-001 模型,虽然经过了指令微调,但第一版思维链论文报告说,它的它思维链推理的能力非常弱 —— 所以指令微调可能不是思维链存在的原因,代码训练才是模型能做思维链推理的最可能原因。
- PaLM 有 5% 的代码训练数据,可以做思维链。
- Codex论文中的代码数据量为 159G ,大约是初代 GPT-3 5700 亿训练数据的28%。code-davinci-002 及其后续变体可以做思维链推理。
- 在 HELM 测试中,Liang et al. (2022) 对不同模型进行了大规模评估。 他们发现了针对代码训练的模型具有很强的语言推理能力,包括 120亿参数的code-cushman-001.。
- 我们在 AI2 的工作也表明,当配备复杂的思维链时,code-davinci-002 在 GSM8K 等重要数学基准上是目前表现最好的模型
- 直觉来说,面向过程的编程 (procedure-oriented programming) 跟人类逐步解决任务的过程很类似,面向对象编程 (object-oriented programming) 跟人类将复杂任务分解为多个简单任务的过程很类似。
- 以上所有观察结果都是代码与推理能力 / 思维链 之间的相关性,但不一定是因果性。这种相关性很有趣,但现在还是一个待研究的开放性问题。目前看来,我们没有非常确凿的证据证明代码就是思维链和复杂推理的原因。
- 此外, 代码训练另一个可能的副产品是长距离依赖,正如Peter Liu所指出:"语言中的下个词语预测通常是非常局部的,而代码通常需要更长的依赖关系来做一些事情,比如前后括号的匹配或引用远处的函数定义"。这里我想进一步补充的是:由于面向对象编程中的类继承,代码也可能有助于模型建立编码层次结构的能力。我们将对这一假设的检验留给未来的工作。
另外还要注意一些细节差异:
- text-davinci-002 与 code-davinci-002
- Code-davinci-002 是基础模型,text-davinci-002 是指令微调 code-davinci-002 的产物(见 OpenAI 的文档)。它在以下数据上作了微调:(一)人工标注的指令和期待的输出;(二)由人工标注者选择的模型输出。
- 当有上下文示例 (in-context example) 的时候, Code-davinci-002 更擅长上下文学习;当没有上下文示例 / 零样本的时候, text-davinci-002 在零样本任务完成方面表现更好。从这个意义上说,text-davinci-002 更符合人类的期待(因为对一个任务写上下文示例可能会比较麻烦)。
- OpenAI 不太可能故意牺牲了上下文学习的能力换取零样本能力 —— 上下文学习能力的降低更多是指令学习的一个副作用,OpenAI 管这叫对齐税。
- 001 模型(code-cushman-001 和 text-davinci-001)v.s. 002 模型(code-davinci-002 和 text-davinci-002)
- 001 模型主要是为了做纯代码 / 纯文本任务; 002 模型则深度融合了代码训练和指令微调,代码和文本都行。
- Code-davinci-002 可能是第一个深度融合了代码训练和指令微调的模型。证据有:code-cushman-001 可以进行推理但在纯文本上表现不佳,text-davinci-001 在纯文本上表现不错但在推理上不大行。 code-davinci-002 则可以同时做到这两点。
3.2 这些能力是在预训练之后已经存在还是在之后通过微调注入?
在这个阶段,我们已经确定了指令微调和代码训练的关键作用。一个重要的问题是如何进一步分析代码训练和指令微调的影响?具体来说: 上述三种能力是否已经存在于初代的GPT-3中,只是通过指令和代码训练触发 / 解锁? 或者这些能力在初代的 GPT-3 中并不存在,是通过指令和代码训练注入? 如果答案已经在初代的 GPT-3 中,那么这些能力也应该在 OPT 中。 因此,要复现这些能力,或许可以直接通过指令和代码调整 OPT。 但是,code-davinci-002 也可能不是基于最初的 GPT-3 davinci,而是基于比初代 GPT-3 更大的模型。如果是这种情况,可能就没办法通过调整 OPT 来复现了。研究社区需要进一步弄清楚 OpenAI 训练了什么样的模型作为 code-davinci-002 的基础模型。
我们有以下的假设和证据:
- code-davinci-002的基础模型可能不是初代GPT-3 davinci 模型。以下是证据:
- 初代的GPT-3在数据集 C4 2016 - 2019 上训练,而 code-davinci-002 训练集则在延长到2021年才结束。因此 code-davinci-002 有可能在 C4 的 2019-2021 版本上训练。
- 初代的 GPT-3 有一个大小为 2048 个词的上下文窗口。code-davinci-002 的上下文窗口则为 8192。GPT 系列使用绝对位置嵌入 (absolute positional embedding),直接对绝对位置嵌入进行外推而不经过训练是比较难的,并且会严重损害模型的性能(参考 Press et al., 2022)。如果 code-davinci-002 是基于初代GPT-3,那OpenAI 是如何扩展上下文窗口的?
- 另一方面,无论基础模型是初代的 GPT-3 还是后来训练的模型, 遵循指令和零样本泛化的能力都可能已经存在于基础模型中,后来才通过指令微调来解锁 (而不是注入)
- 这主要是因为 OpenAI 的论文报告的指令数据量大小只有 77K,比预训练数据少了几个数量级。
- 其他指令微调论文进一步证明了数据集大小对模型性能的对比,例如 Chung et al. (2022) 的工作中, Flan-PaLM 的指令微调仅为预训练计算的 0.4%。一般来说,指令数据会显著少于预训练数据。
- 然而 ,模型的复杂推理能力可能是在预训练阶段通过代码数据注入
- 代码数据集的规模与上述指令微调的情况不同。这里的代码数据量足够大,可以占据训练数据的重要部分(例如,PaLM 有 8% 的代码训练数据)
- 如上所述,在 code-davinci-002 之前的模型 text-davinci-001 大概没有在代码数据上面微调过,所以它的推理 / 思维链能力是非常差的,正如第一版思维链论文中所报告的那样,有时甚至比参数量更小的 code-cushman-001 还差。
- 区分代码训练和指令微调效果的最好方法可能是比较 code-cushman-001、T5 和 FlanT5
- 因为它们具有相似的模型大小(110亿 和 120亿),相似的训练数据集 (C4),它们最大的区别就是有没有在代码上训练过 / 有没有做过指令微调。
- 目前还没有这样的比较。我们把这个留给未来的研究。
四、text-davinci-003 和 ChatGPT,基于人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF) 的威力
在当前阶段(2022 年 12 月), text-davinci-002、text-davinci-003 和 ChatGPT之间几乎没有严格的统计上的比较 ,主要是因为
- text-davinci-003 和 ChatGPT 在撰写本文时才发布不到一个月。
- ChatGPT 不能通过 OpenAI API 被调用,所以想要在标准基准上测试它很麻烦。
所以在这些模型之间的比较更多是基于研究社区的集体经验 (统计上不是很严格)。不过,我们相信初步的描述性比较仍然可以揭示模型的机制。
我们首先注意到以下 text-davinci-002,text-davinci-003 和 ChatGPT 之间的比较:
- 所有三个模型都经过指令微调。
- text-davinci-002 是一个经过监督学习指令微调 (supervised instruction tuning) **的模型
- text-davinci-003 和 ChatGPT 是基于人类反馈的强化学习的指令微调 (Instruction tuning with Reinforcement Learning from Human Feedback, RLHF)。这是它们之间最显着的区别。
这意味着大多数新模型的行为都是 RLHF 的产物。
那么让我们看看 RLHF 触发的能力:
- 翔实的回应: text-davinci-003 的生成通常比 text-davinci-002长。 ChatGPT 的回应则更加冗长,以至于用户必须明确要求"用一句话回答我",才能得到更加简洁的回答。这是 RLHF 的直接产物。
- 公正的回应:ChatGPT 通常对涉及多个实体利益的事件(例如政治事件)给出非常平衡的回答。这也是RLHF的产物。
- 拒绝不当问题:这是内容过滤器和由 RLHF 触发的模型自身能力的结合,过滤器过滤掉一部分,然后模型再拒绝一部分。
- 拒绝其知识范围之外的问题:例如,拒绝在2021 年 6 月之后发生的新事件(因为它没在这之后的数据上训练过)。这是 RLHF 最神奇的部分,因为它使模型能够隐式地区分哪些问题在其知识范围内,哪些问题不在其知识范围内。
有两件事情值得注意:
- 所有的能力都是模型本来就有的, 而不是通过RLHF 注入的。 RLHF 的作用是触发 / 解锁突现能力。这个论点主要来自于数据量大小的比较:因为与预训练的数据量相比,RLHF 占用的计算量 / 数据量要少得多。
- 模型知道它不知道什么不是通过编写规则来实现的, 而是通过RLHF解锁的。这是一个非常令人惊讶的发现,因为 RLHF 的最初目标是让模型生成符合人类期望的回答,这更多是让模型生成安全的句子,而不是让模型知道它不知道的内容。
幕后发生的事情可能是:
- ChatGPT: 通过牺牲上下文学习的能力换取建模对话历史的能力。这是一个基于经验的观测结果,因为 ChatGPT 似乎不像 text-davinci-003 那样受到上下文演示的强烈影响。
- text-davinci-003:恢复了 text-davinci-002 所牺牲的上下文学习能力, 提高零样本的能力。
我们不确定这是否也是 RLHF 或其他东西的副产品。 根据instructGPT的论文,这是来自于强化学习调整阶段混入了语言建模的目标(而不是 RLHF 本身)。
五、总结当前阶段 GPT-3.5 的进化历程
到目前为止,我们已经仔细检查了沿着进化树出现的所有能力,下表总结了演化路径:
我们可以得出结论: | 能力 | OpenAI模型 | 训练方法 | OpenAI API | OpenAI论文 | 近似的开源模型 | | — | — | — | — | — | — | | GPT-3系列 | | | | | | | 语言生成 + 世界知识 + 上下文学习 | GPT-3初始版本 大部分的能力已经存在于模型中,尽管表面上看起来很弱。 | 语言建模 | Davinci | GPT-3论文 | Meta OPT | | + 遵循人类的指令+ 泛化到没有见过的任务 | Instruct-GPT初始版本 | 指令微调 | Davinci-Instruct-Beta | Instruct-GPT论文 | T0论文 Google FLAN论文 | | + 代码理解+ 代码生成 | Codex初始版本 | 在代码上进行训练 | Code-Cushman-001 | Codex论文 | Salesforce CodeGen | | GPT-3.5系列 | | | | | | | ++ 代码理解++ 代码生成+ 复杂推理 / 思维链 (为什么?)+ 长距离的依赖 (很可能) | 现在的Codex GPT3.5系列中最强大的模型 | 在代码+文本上进行训练 在指令上进行微调 | Code-Davinci-002 (目前免费的版本 = 2022年12月) | Codex 论文 | | | ++ 遵循人类指令- 上下文学习- 推理能力++ 零样本生成 | 有监督的Instruct-GPT 通过牺牲上下文学习换取零样本生成的能力 | 监督学习版的指令微调 | Text-Davinci-002 | Instruct-GPT论文, 有监督的部分 | T0论文 Google FLAN论文 | | + 遵循人类价值观+ 包含更多细节的生成+ 上下文学习+ 零样本生成 | 经过RLHF训练的Instruct-GPT 和002模型相比,和人类更加对齐,并且更少的性能损失 | 强化学习版的指令微调 | Text-Davinci-003 | Instruct-GPT论文, RLHF部分,从人类反馈中的学习摘要。 | DeepMind Sparrow 论文 AI2 RL4LMs | | ++ 遵循人类价值观++ 包含更多细节的生成++ 拒绝知识范围外的问题 (为什么?)++ 建模对话历史的能力– 上下文学习 | ChatGPT 通过牺牲上下文学习的能力换取建模对话历史的能力 | 使用对话数据进行强化学习指令微调 | | | DeepMind Sparrow论文 AI2 RL4LMs |
- 语言生成能力 + 基础世界知识 + 上下文学习都是来自于预训练(
davinci
) - 存储大量知识的能力来自 1750 亿的参数量。
- 遵循指令和泛化到新任务的能力来自于扩大指令学习中指令的数量(
Davinci-instruct-beta
) - 执行复杂推理的能力很可能来自于代码训练(
code-davinci-002
) - 生成中立、客观的能力、安全和翔实的答案来自与人类的对齐。具体来说:
- 如果是监督学习版,得到的模型是
text-davinci-002
- 如果是强化学习版 (RLHF) ,得到的模型是
text-davinci-003
- 无论是有监督还是 RLHF ,模型在很多任务的性能都无法超过 code-davinci-002 ,这种因为对齐而造成性能衰退的现象叫做对齐税。
- 对话能力也来自于 RLHF(
ChatGPT
),具体来说它牺牲了上下文学习的能力,来换取: - 建模对话历史
- 增加对话信息量
- 拒绝模型知识范围之外的问题
六、**GPT-3.5 目前不能做什么**
虽然GPT-3.5是自然语言处理研究中的重要一步,但它并没有完全包含许多研究人员(包括 AI2)设想的所有理想属性。以下是GPT-3.5不具备的某些重要属性:
- 实时改写模型的信念:当模型表达对某事的信念时,如果该信念是错误的,我们可能很难纠正它:
- 我最近遇到的一个例子是:ChatGPT 坚持认为 3599 是一个质数,尽管它承认 3599 = 59 * 61。另外,请参阅Reddit上关于游得最快的海洋哺乳动物的例子。
- 然而,模型信念的强度似乎存在不同的层次。一个例子是即使我告诉它达斯·维达(星球大战电影中的人物)赢得了2020年大选,模型依旧会认为美国现任总统是拜登。但是如果我将选举年份改为 2024 年,它就会认为总统是达斯·维达是 2026 年的总统。
- 形式推理:GPT-3.5系列不能在数学或一阶逻辑等形式严格的系统中进行推理:
- 在自然语言处理的文献中, "推理" 一词的定义很多时候不太明确。但如果我们从模糊性的角度来看,例如一些问题 (a) 非常模棱两可,没有推理;(b) 有点儿逻辑在里面,但有些地方也可以模糊;(c) 非常严谨,不能有任何歧义。那么,
- 模型可以很好地进行 (b) 类的带模糊性的推理,例子有:
- 生成如何做豆腐脑的方法。做豆腐脑的时候,中间很多步骤模糊一点是可以接受的,比如到底是做咸的还是做甜的。只要整体步骤大致正确,做出来的豆腐脑儿就能吃。
- 数学定理的证明思路。证明思路是用语言表达的非正式的逐步解法,其中每一步的严格推导可以不用太具体。证明思路经常被用到数学教学:只要老师给一个大致正确的整体步骤,学生就可以大概明白。然后老师把具体的证明细节作为作业布置给学生,答案略。
- GPT-3.5 不能进行类型 (c) 的推理(推理不能容忍歧义)。
- 一个例子是严格的数学证明,要求中间步骤中不能跳,不能模糊,不能错。
- 但这种严格推理到底是应该让语言模型做还是让符号系统做还有待讨论。一个例子是,与其努力让 GPT 做三位数加法,不如直接调 Python。
- 从互联网进行检索:GPT-3.5 系列(暂时)不能直接搜索互联网
- 但是有一篇 WebGPT 论文发表于2021年12月,里面就让 GPT 调用了搜索引擎。所以检索的能力已经在 OpenAI 内部进行了测试。
- 这里需要区分的一点是,GPT-3.5 的两个重要但不同的能力是 知识 和 推理。一般来说,如果我们能够 将知识部分卸载到外部的检索系统,让语言模型只专注于推理,这就很不错了。 因为:
- 模型的内部知识总是在某个时间被切断。模型始终需要最新的知识来回答最新的问题。
- 回想一下,我们已经讨论过 1750 亿的参数大量用于存储知识。如果我们可以将知识卸载到模型之外,那么模型参数可能会大大减少,最终它甚至可以在手机上运行(疯狂的想法,但 ChatGPT 已经足够科幻了,谁知道未来会怎样呢).
七、结论
在这篇博文中,我们仔细检查了GPT-3.5系列的能力范围,并追溯了它们所有突现能力的来源。初代GPT-3模型通过预训练获得生成能力、世界知识和in-context learning。然后通过instruction tuning的模型分支获得了遵循指令和能泛化到没有见过的任务的能力。经过代码训练的分支模型则获得了代码理解的能力,作为代码训练的副产品,模型同时潜在地获得了复杂推理的能力。结合这两个分支,code-davinci-002似乎是具有所有强大能力的最强GPT-3.5模型。接下来通过有监督的instruction tuning和 RLHF通过牺牲模型能力换取与人类对齐,即对齐税。 RLHF 使模型能够生成更翔实和公正的答案,同时拒绝其知识范围之外的问题。
我们希望这篇文章能够帮助提供一个清晰的GPT评估图,并引发一些关于语言模型、instruction tuning和code tuning的讨论。最重要的是, 我们希望这篇文章可以作为在开源社区内复现GPT-3.5的路线图。
"因为山就在那里。"——乔治·马洛里,珠穆朗玛峰探险先驱
常见问题
- 这篇文章中的这些说法更像是假设 (hypothesis) 还是结论 (conclusion)?
- 复杂推理的能力来自于代码训练是我们倾向于相信的假设 (hypothesis)
- 对没有见过的任务泛化能力来自大规模指令学习 是至少 4 篇论文的结论 (conclusion)
- GPT-3.5来自于其他大型基础模型,而不是1750亿参数的GPT-3 是有根据的猜测 (educated guess)。
- 所有这些能力都已经存在了,通过instruction tuning,无论是有监督学习或强化学习的方式来解锁而不是注入这些能力 是一个比较强的假设 (strong assumption)。 主要是因为instruction tuning数据量比预训练数据量少了几个数量级。
- 结论 (conclusion) = 许多证据支持这些说法的正确性;假设 (hypothesis) = 有正面证据但不够有力;有根据的猜测 (educated guess) = 没有确凿的证据,但某些因素会指向这个方向
- 为什么其他模型(如 OPT 和 BLOOM)没有那么强大?
- OPT大概是因为训练过程太不稳定
- BLOOM的情况则未知。如果您有更多意见,请与我联系
附录 - 中英术语对照表
英文 | 中文 | 释义 |
Emergent Ability | 突现能力 | 小模型没有,只在模型大到一定程度才会出现的能力 |
Prompt | 提示词 | 把 prompt 输入给大模型,大模型给出 completion |
In-Context Learning | 上下文学习 | 在 prompt 里面写几个例子,模型就可以照着这些例子做生成 |
Instruction Tuning | 指令微调 | 用 instruction 来 fine-tune 大模型 |
Code Tuning | 在代码上微调 | 用代码来 fine-tune 大模型 |
Reinforcement Learning with Human Feedback (RLHF) | 基于人类反馈的强化学习 | 让人给模型生成的结果打分,用人打的分来调整模型 |
Chain-of-Thought | 思维链 | 在写 prompt 的时候,不仅给出结果,还要一步一步地写结果是怎么推出来的 |
Scaling Laws | 缩放法则 | 模型的效果的线性增长要求模型的大小指数增长 |
Alignment | 与人类对齐 | 让机器生成符合人类期望的,符合人类价值观的句子 |
2022-2023, ironartisan Revision
dcd9b5e